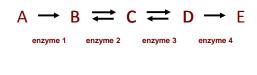

General Features of Metabolic Pathways

Endergonic/exergonic reactions


The **rate** of a biochemical reaction is dependent on enzyme activity

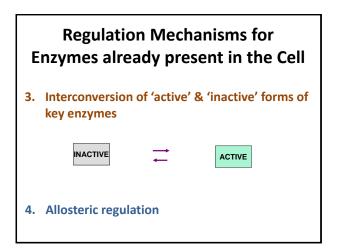
The **direction** of a reaction is dependent on the properties of the chemical molecules themselves

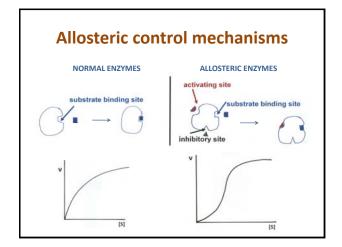
Endergonic/exergonic reactions

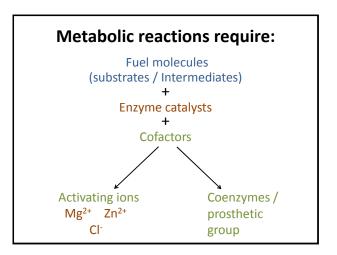
Reversible & Irreversible Steps in a Metabolic Pathway

The rate of an enzyme reaction can be regulated in several ways:

- by altering the availability of the substrate, (e.g. by increasing the transport system into the cell)
- 2. by increasing the **amount** of enzyme present in the cell, by increasing the rate of transcription from the gene in DNA into mRNA)


'up regulation' or 'induction' 'down regulation' or 'repression'

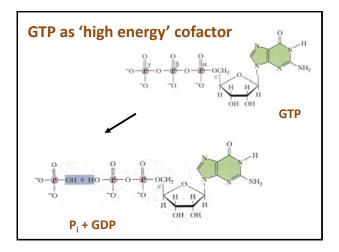

Regulation Mechanisms for Enzymes already present in the Cell


3. Interconversion of 'active' & 'inactive' forms of key enzymes

Interconversion of Active & Inactive Forms of the Enzyme by Covalent Modification OH INACTIVE ENZYME Protein kinase ATP ACTIVE ENZYME Protein phosphatase

Examples of Enzyme Cofactors ATP → ADP + P_i ATP acts as a 'high energy' cofactor for kinase enzymes ATP breakdown releases approx 31 kJ of energy per mole

ATP acts as 'high energy' cofactor in the cell for driving mechanical events such as pumps, transporters, contractile events & movement


General role of ATP

Other 'high energy' nucleotides

other 'high energy' nucleotide cofactors are used to drive specific biosynthetic reactions

UTP drives the synthesis of complex sugars

GTP drives the synthesis of proteins

