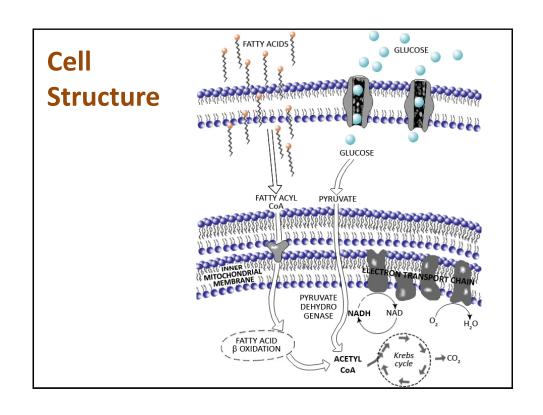
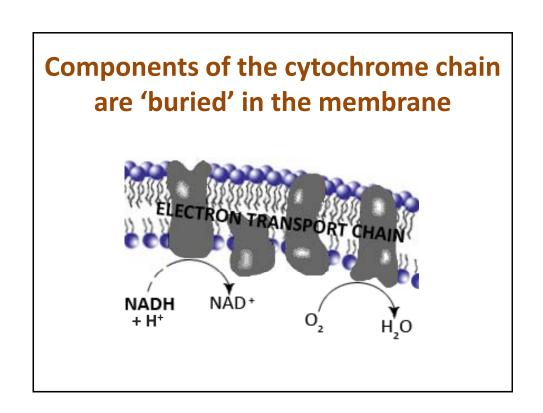
Key Points

• **Definition:** process for the transfer of H

atoms to oxygen

• Location: mitochondria


• **Tissues:** most tissues & cell types


(not red blood cells)

• Functions: 'energy trapping'

direct phosphorylation of ADP to produce ATP

Mitochondrial Compartments Oxidative phosphorylation takes place in association with the inner compartments of the mitochondria Inter membrane space Matrix Inner membrane Outer membrane Outer membrane

Stepwise transfer of H atoms to O₂

(NADH + H⁺
$$O_2$$
 NAD⁺ + H₂O)

NADH + H⁺

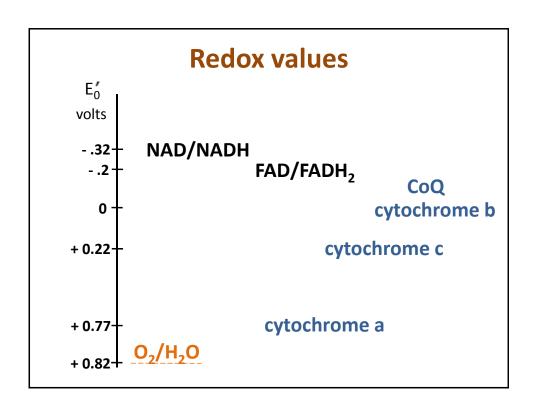
Carrier

Carrier

Carrier

 e_-

Carrier


 $e_ e_ e_-$

Components of the electron transport chain

- H pair acceptors:
 - Flavin cofactors
 - Coenzyme Q CoQ
- Electron acceptors:
 - Iron sulphur proteins
 - Cytochrome proteins

Redox carriers

- This redox potential describes the ability of the carrier to donate its electrons to another electron acceptor molecule
- Electrons 'flow' from a carrier with a negative E_0^I value to a carrier with a more positive E_0^I value

Arrangement of oxidation/reduction carriers in the electron transport chain

Flavin
$$\rightarrow$$
 CoQ \rightarrow cyt b \rightarrow cyt c \rightarrow cyt a

Order of carriers in the electron transport chain

$$(FMN \rightarrow Fe-S) \rightarrow CoQ \rightarrow (cyt b \rightarrow Fe-S \rightarrow cyt c_1) \rightarrow cyt c \rightarrow (cyt a \rightarrow cyt a_3) \rightarrow O_2$$

$$III$$

$$IV$$